
Advanced Material Rendering

Michał Drobot
Visual Technical Director

Reality Pump

Advanced Materials

 State of material rendering
Several techniques from the ‘old’ toolbox

 Diffuse + Specular + Normal + Phong

 Parallax

 Fur / Shell rendering

 Alpha blending

 Cube maps

 IBL

 Reflections / Refractions / Glossy Specular

Advanced Materials

 Material rendering stucked
 Those techniques doesn’t work right with current deferred rendering

architectures

 Deferred shading
 Brings global light-material interaction shaders

 Requires uniform BRDF across all materials during shading pass

 Really fast

 Requires one geometry pass

 Fat G-Buffer might hurt the bandwidth

 Lacks material variety

 Adding different material support seriously hurts the speed

 Alpha blending must be done in forward pass

Advanced Materials

 Material rendering stucked

 Light pre-pass
 Requires double geometry pass

 ‘light’ g-buffer

 Normal + Z

 Material pass

 Renders invidual meshes with custom material shaders

 Use light information gathered in light buffer, created from ‘light’
g-buffer

 Allows usage of many different material shaders

 Unified light interaction

 Alpha blending must be done in forward pass

Advanced Materials

 We want a new toolbox

 Compatible with deferred renderers

 More advanced techniques

Jittering tricks

 Jittering

 Sampling in a pattern to cover undersampling in more
plausible noise

 Normally done using ‘rotating disk’ of sample offset
distribution
 Uniform

 Poisson

Jittering tricks

 Jittering using rotating disk

 Precompute a good offset distribution table
 N points in normalized space using disk distribution

 For each shaded pixel
 Get random normal vector N

 For each sample

 Rotate the point from the disk distribution by N

 Sample using the point as the scaled offset

 Because of non-discrete sampling point, linear
sampling is important

Jittering tricks

 Jittering using alternating pattern

 What if we can’t afford additional noise lookup, ALU per
sample and linear filtering

 We need carefull manual sampling pattern

 We know the exact pixel position from VPOS
 With that we can use dithering pattern

 With different pixels we use different pattern

 Used patterns cover different samples

Jittering tricks

 Jittering using alternating pattern

 Example
 Let’s have 2 different sampling patterns

 Together they cover the full sampling area with dither

 We use different for even and odd pixels

 Cover the whole region with 2 times less samples

 Removes banding by adding controlable noise pattern

Jittering tricks

 Jittering using alternating pattern

 Shadowing example

 Dual paraboloid soft shadows

 4 taps only

 Minimal additional overhead

 Plausible noise

 Bigger softness requires more patterns

float4 tex2DSHDWPCF(sampler2D tex, float4 UV, float2 vP)

{

const float4 gPCFJitter1[2] = {

float4(0.5, 0.0, -0.5, 0.0),

float4(0.5, 0.5, -0.5, -0.5), };

const float4 gPCFJitter2[2] = {

float4(0.0, 0.5, 0.0, -0.5),

float4(0.5, -0.5, -0.5, 0.5), };

float4 Samples;

float Index = (vP.x + vP.y) % 2;

float JitDis = 0.003 * (1.0 + 2.0 * (frac(dot(UV.xy,

165697.0)) - Index * 0.5));

float4 tC1 = gPCFJitter1[Index] * JitDis;

float4 tC2 = gPCFJitter2[Index] * JitDis;

tC1 += UV.xyxy;

tC2 += UV.xyxy;

/…/

}

Jittering tricks

Jittering tricks

Transparency

 Transparency in deferred architecture is tricky

 Scenarios

 Simple transparency (lit)

 Fully transparent material

 Semi-Transparent material (lit)

 Translucent material (always lit)

Simple transparency

 Simple transparency

 Think of simple fade in, fade out
 Sometimes needed when objects get in our camera view (think

leaves…)

 Grass blend in/blend out

 Objects popping in

 Must be cheap and coherent with lighting

Simple transparency

 Simple transparency

 Use screen door effect
 Compute/lookup dithering patterns

 Use them to ‘kill’ pixels

 Alternate between patterns depending on transparency value

 4 level transparency easy to compute when bandwidth
bound
 Remember to check were the compiler is putting your ‘kills’ – should

do it ASAP

Simple transparency

float jitteredTransparency(float alpha, float2 vP)

{

const float jitterTable[4] =

{

float(0.0),

float(0.26),

float(0.51),

float(0.76),

};

float jitNo = 0.0;

int2 vPI = 0;

vPI.x = vP.x % 2;

vPI.y = vP.y % 2;

int jitterIndex = vPI.x + 2 * vPI.y;

jitNo = jitterTable[jitterIndex];

if (jitNo > alpha)

return -1;

return 1;

}

0% 25% 50% 75% 100%

Simple transparency

 Simple transparency

 Dithered transparency looks bad in 720p
 We would like to blur those nasty dithered pixels

 Can’t afford another pass that would detect them and blur

 We are already doing it in Edge AA pass

Simple transparency

 Custom Edge AA

 Common technique in deferred renderers

 Full screen pass
 Find edges based on depth/normal data

 Blur them

 Can use it to our advantage

 Just hint the Edge AA filter to find edges ‘between’ the killed
pixels
 You get nice blending for free

 Could be done with a flag or more hacky by altering the source of
edge detection (put discontinioutis in depth)

Fully transparent

 Fully transparent

 Doesn’t need lighting
 Just reflects / refracts light

 Usefull for
 Glass

 Water

 Distortion particles

 Treated as post-effect
 Requires backbuffer as a texture

 Handy to have depth information in Alpha channel

Fully transparent

 Refraction

 Use the eye vector

 Refract it physically against surface normal

 Project on backbuffer and read

 Use refraction masking
 Gpu Gems 2

Fully transparent

 Reflection

 Treat the backbuffer as a spherical map

 Reflect the eye vector against surface normal

 Use spherical mapping for outgoing vector
 We spherically map the backbuffer to fake RT reflection

 Sample the backbuffer
 Or some smaller – blured version for glossy relfeciton

 Hacky
 Looks quite convincing

 Use dual-paraboloid enviromental map for quality

Fully transparent

Advanced materials

 Glass
 Fully transparent material

 Rendered in post

 Reflection - Refractions surface
 Follows fresnel law

 Mix reflection with refraction depending on angle beetwen eye vector
and surface normal

 Use fake real time reflection

 Use backbuffer for refraction

 Can use blurred backbuffer for glossiness and translucency
approximation

Semi-Transparent material

 Require lighting

 Correct

 Consistent with the whole scene

 Shadowed

 Therefore we want it in deffered mode

 Preferably with single lighting and shading cost

 Use dither patterns with sample reconstruction

Semi-Transparent material

 2 pass rendering

 1 pass – semi-transparent materials are written into g-buffer
using dithering patten

 2 pass – materials are fully rendered after light accumulation,
using sample reconstruction to get correct lighting values.
Sorting and alpha blending is required.

 Someone actually got the same idea :]

 Inferred Rendering

Semi-Transparent material

 1 pass
 pattern covers the basic rendering quad (i.e. 2x2)

 Pattern choice depends on number of transparent material layers beeing
overlayed

 One 2x2 quad can cover

 2 materials with 75:25 ; 50:50 quality ration

 3 materials with 50:25:25

 4 materials with 25:25:25:25 quality ratio

 Each additional layer leads to quality loss of lighting

O T1

T1 O

O T2

T1 O

T3 O

T1 T2

Semi-Transparent material

 2 pass
 Overlaping semi-transparent materials are sorted back to front (with

solid beeing the first to be rendered)

 For each overlaping material
 Lightbuffer is sampled with correct pattern to acquire original lighting values

 Material is rendered with full resolution textures and reconstructed lighting

 Transparency is handled by alphablending with the backbuffer

Semi-Transparent material

 Lighting reconstruction

 Taking one sample only leads to heavy aliasing

 Must take multiple samples for reconstruction
 Check if the pixel beeing shaded is the original one

 If false, sample the neighbourhood for valid samples, weight them and
average for sample reconstruction

 If true, leave unaltered

 Leads to less aliasing and more stability during movement

 Using 2x2 quad for more than 2 materials=heavy texture cache trashing
and aliasing

Semi-Transparent material

 Pros
 Method suits light pre pass architecture

 Same with hybrid deferred renderers

 Flexible

 Predictable, linear quality loss

 Cons
 Taxing ROPs because of alpha blending

 Especially frustrating when high precision blend operations are slow

 Requires the second pass for solid and opaque geometry

 Not a problem if doin light pre pass anyway

 Sometimes problematic to flag the right objects to use dither

 Mostly doing too much, thus losing quality and performance

Semi-Transparent material

 We couldn’t take the High Precision blending hit and additional
geometry passes
 Hybrid deferred renderer

 Settled with one layer transparency
 Better performance, quality and stability

 More flexible

Semi-Transparent material

 Deferred renderer with single transparency
 Semi-transparent geometry is rendered to g-buffer with checkboard

pattern

 Albedo is set to 1
 1 – pass is feather weight – normals and specular only

 After deferred shading
 Acumulation buffer is containing alternating pixels of semi-

transparent geometry lighting information and underlaying shaded
geometry

 2 – pass is reconstructing both

 Lighting data

 Shaded background

 Material is rendered with full quality

 Alpha blending is done manually

Semi-Transparent material

 Deferred renderer with single transparency
 Reconstruction

 Sample a cross a pattern

0 1 2 3

0

1

3

2

For even pixel
Corners – light buffer
Middle – background

For odd pixels
Corners – background
Middle – light buffer

Semi-Transparent material

 Deferred rendering with single transparency
 Really fast

 Only the semi-transparent geometry is using pixel ‘kill’

 Sample reconstruction is simple and coherent

 No branching needed

 High quality
 Background and lighting data is ¼ resolution, bilaterally upscaled

 Stable during movement

Semi-Transparent material

Semi-Transparent material

Semi-Transparent material

Semi-Transparent material

Semi-Transparent material

Translucent material

 Translucent materials

 Only allows light to pass through diffusely

 Transparent materials are clear, while translucent ones
cannot be seen through clearly.

 Because of light diffusion inside material volume
 Material is lit additionally by Sub Surface Scaterring

 Visible background is diffused (blurred) – refraction

 SSS amount is dependant on material parameters and
thickness
 Thicks materials, requiring global SSS are unpractical for

performance reasons

 We can efficiently simulate local SSS (like in skin rendering)

Translucent material

 Translucent materials

 For simplicity assume translucency with minimal local SSS

 We need to simulate refracted light diffusion
 Take the backbuffer

 Perform hierarchical downscale with blurring

 Sample original and blurred background

 Lerp depending on translucency factor

 Use for refracted light

 Can use the same for fake real time glossy reflections

Skin rendering

 Skin rendering

 Important for believable characters

 Exhibits complex light interactions
 Diffuse

 Specular

Skin rendering

 Skin is multilayered

 Oily layer

 Epidermis

 Dermis

 Know material

 We see it everyday

 Therefore

 Complex

 Hard
 Research

 Tweaking

OMG!

Skin rendering

 Oily layer

 Responsible for specular reflectance
 Fresnel reflectance

 Dielectric
 Reflects unaltered light

 White light reflected as white light

 Fine scale roughness
 Requires advanced BRDF

Skin rendering

 Oily layer

 Simulate using
 Finescale detail normal map

 Specular intensity and roughness maps

 BRDF

 Cook-Torrance

 Shirmay-Kallos

 Preferable for consoles due to easy factorization and performace
optimizations

Skin rendering

 Oily layer

 BRDF
 Blinn-Phong with several lobes and fresnel reflectance

 Optimal for consoles

 We are using two lobes tweaked by artists

Specular = pow(dot(N,H),smallLobe)

Specular+= pow(dot(N,H),bigLobe)

OK!

Skin rendering

 Oily layer

 Human face reflectance parameters varies depending on face
region
 Acquisition of Human Faces Using A Measurement-Based Skin

Reflectance Model. Weyrich 2006

 Several Cook-Torrance parameter maps exists based on
empirical testing

 Let your artists factor it into their specular maps

Skin rendering

 Ps – specular intensity

 M – specular roughness

Skin rendering

 Oily, Epidermis, Dermis

 Responsible for diffuse light scattering

 Light waves travel different distance because of scattering
between layers
 Aproximate with diffusion profile

 Gpu Gems3 – Skin rendering

 Measured empirically by light scattering study

 Laser pointer in your: skin, wax, milk etc.

Skin rendering

 Sub Surface Scattering

 We can aproximate diffusion profiles by sum of weightened
gaussians

 Each material requires individual weight table

 Example weights from Nvidia skin shader

Skin rendering

 Sub Surface Scattering

 Correct SSS lighting using texture space diffusion
 Unwrap the object

 Create object light buffer in texture space

 Perform sum of gaussian convolutions over the unwraped boject light
buffer

 Take care for stretching

 Wrap it back onto the model and use in shading

Skin rendering

Skin rendering

 SSS by texture space diffusion

 Accurate

 Costly
 Unwraping

 Additional memory

 Relighting

 In deferred architecture we have got everything we need in
screen space light buffer

Skin rendering

 Screen Space Sub Subsurface Scattering

 Use during material pass

 Material shader samples the lightbuffer
 Sample sum of gaussians

 Take careful samples with diffusion profile weight table

 Compute ddx and ddy for sampling radius control

 Use masking to sample only from skin regions

Skin rendering

 Screen Space Sub Subsurface Scattering

 Sampling
 We take 9 taps with dynamic radius (good compromise for consoles)

 Jittered sampling

 Linear filtering (where possible and reasonable)

 Weight table and distance tweaked manually, based on research
papers

 Sampling distance altered by current texel mip level

 Prevents SSS stretching

Skin rendering

 Screen Space Sub Subsurface Scattering

 Jittering
 Use variable sampling pattern trick

 Change sampling pattern depending on curent pixel VPOS

 Cheap with great effect

 Ignore samples from outside the object
 Mask encoded in one bit (LSB) of light buffer

Skin rendering

 Screen Space Sub Subsurface Scatterin

Skin rendering

 Screen Space Sub Subsurface Scatterin

Skin rendering

 Screen Space Sub Subsurface Scatterin

Skin rendering

 Backside translucency

 Operating in SS and in deferred mode
 No light information regarding light transmission from behind

 Important tranlucency effect

 Red light through ears, hands (bone structure)

Skin rendering

 Backside translucency

 Do in forward mode
 Quick and dirty

 Calculate backface lighting for n strongest lights

 Attenuate by thickness map

 Baked (xNormal) or done by artists

 Works best for thin, non deformable, surfaces (leaves, ears)

Skin rendering

 Backside translucency

 Accurate
 For each light render the depth map (use the one from shadow

mapping)

 During shading, project the depth map and calculate the distance
between the point beeing shaded and the point ‘on the other side’
along light vector

 Calculate light value and attenuate it by calculated distance

Skin rendering

Hair rendering

 Hair
 Use alpha tested quads with simple transparency

 Based on pixel ‘kill’ – therefore no need for sorting

 Jittering and blending takes care for plausible blending

 For lively apperiance advanced anizotropic specular is required

 Kajiya-Kai

 Ward Anisotropic

 Anizotropy direction easily controlable

 Painted per vertex

 Direction texture map

 Or simply follow geometry tangent

 Artists control the direction by Uvs rotation in texture space

Hair rendering

 Hair
 Use polygon soup with simple transparency

 Based on pixel ‘kill’ – therefore no need for sorting

 Jittering and post smart blurring takes care for plausible blending

Hair rendering

 Hair
 Advanced anizotropic specular is required for lively apperiance

 Kajiya-Kai

 Ward Anisotropic

 Anizotropy direction easily controlable

 Painted per vertex

 Direction texture map

 Or simply follow geometry tangent

 Artists control the direction by Uvs rotation in texture space

Hair rendering

 Hair
 2 pass rendering

 1 – render the polygon soup

 2 – render after deferred shading

 Backbuffer contains Blinn-Phong lit hair

 Add ward anizotropic specular from 2 most influencial

 Treat the camera as additional light

 Photography trick

 Hair look healthier and more alive

Water

 Water

 Complex material
 Geometry

 Wave creation, propagation and interaction

 Optics

 Surface rendering

 LODing scheme

Water

 Geometry

 Render as tessaleted mesh
 Adaptive Tesselation in screenspace

 Nearer – more triangles

 Use vertex shader for wave creation and propagation
 Gerstner wave equation

 Position and normal = fast computation

 Can control choppiness

 Verticies closer for wave crest

 See Gpu Gems 1 : Effective Water Simulation from Physical Models

 Generate several waves

 Differ amplitude, frequency, direction, roughness

Water

Water

 Geometry

 Wave amplitude is attenuated with vertex distance to sea
bottow
 Wave fadeout on beaches

 Can generate foam particles on wave crest
 We do it in pixel shader

 Splash foam texture where needed

 For physics
 Evaluate the wave function per point when needed

Water

 Optics
 Surface normal

 Reflection

 Refraction

 Light scattering

 Light extinction

 Caustics

 Solid surface decals

 Specular

Water

 Optics

 Excellent references for underwater photography
 http://www.seafriends.org.nz/phgraph/water.htm

http://www.seafriends.org.nz/phgraph/water.htm

Water

 Optics

 Surface normal
 Per vertex tangent basis from gerstner wave simulation

 Per pixel normal blend

 FFT

 Computed real time

 Blend of artist created, moving textures

 Dynamic normal map using Navier Stokes

 256x256

 Fluid splashes for each physical object

 Centered at the camera position

 Blends away from camera

Water

Water

 Optics

 Reflection
 Render the reflection buffer

 Use planar mirror matrix

 Low res buffer (512x512)

 LOD models, lights and shaders

 Blur (stronger horizontal)

 Must be HDR

 RGBM8

 Reflect the eye vector by surface normal

 Project on reflection buffer and sample

Water

 Optics

 Refraction
 Refract the eye vector by surface normal

 Project on backbuffer

 Sample the backbuffer

 Can take 3 samples with offset – chromatic abberations

 Sample = light
 Scatter

 Extinct

Water

 Optics

 Light extinction

 Light coming from the sky is beeing attenuated by wavelength

 Colour grading

 Depends on D – ray length from surface to point beeing shaded

 Must be attenuated per channel

 Use research data

Water

 Optics

 Light scattering

 Reflected light (incoming to camera) is scattered and diffused

 Reyleigh – contrast loss

 Tindall – bluring (can lerp between blured and original backbuffer)

Water

 Optics

 Final light – simplified

 Incoming light to camera

 sL = extinct(L,distanceToSurface,waveLengthExtTable)

 finalL = scatter(sL,distanceToCamera, attackAngle)

 Proper evaluation requires

 Precalcualted cube textures with calculated ray scattering and extinction

 Must recalculate with water parameter change

 Found a good aproximattion to given functions

 Assume the camera is above water surface

 Every distance easy to compute

 Reconstruct Camera and World space position of point being shaded
and point being sampled from backbuffer

Water

Water

Water

Accumulate
with distance
until fully scattered

Water

 Approximate with a function
 Dependant on

 Attack angle

 Distance from sampled point to surface

 Distance from shaded point to sampled point

 Water parameters (extinction table, tint)

 See appendix

 Mix relfection and refraction using fresnel function

Water

 Causitcs

 Project several caustic patterns on sea bottom
 Project on backbuffer

 Use reconstructed world position for Uvs and projection

 Smartly animate

 Attenuate using extinction

Water

 Surface decals

 Textures blended with water

 On top of water

 Lit per-vertex

Foam
 Foam texture

 Blended where

 Wave height > threshold

 Distance from surface to bottom < threshold

 Distance from surface to point sampled from backbuffer < threshold

 Allows dynamic foam around objects – tricky to get right

Water

 Specular

 Use true reflection vector
 Better specular shape for sun

 Average several lobes for area light specular

 Take care for precise normals
 Specular values are high

 All precision artifacts will be visible

Water

 Soft edge

 Get distance from point shaded to the point sampled from
backbuffer

 Use it to blend with backbuffer

 Soft transition between water and shore (or objects)

Special Water Types

 Swamp water

 Compute blurred backbuffer (BB)
 1/32 of original buffer

 Refraction = lerp(original,blur,rayLengthFunction)

 BB holds sun shadow mask in Alpha
 Used for specular and light relfection attenuation

 Using BB simulates volumetric lighting

 Simplified scattering equation
 No extinction (assumed too dense = solid color)

 Different surface normals

Special Water Types

Special Water Types

Special Water Types

 Muddy water

 Mix of ocean water and swampy water

 Uses Navier Stokes velocity vectors to mix between original
and blured backbuffer
 Simulates water dusting due to movement

 Can do the same using artist created textures

 Use skyBox Cube for reflection
 Speed up

Special Water Types

 River water

 Mix of everything

 Moving surface textures
 Blending normals

 Rivers layed down as paths (roads) of polygons
 Direction

 Speed

 Foam amount

 Curvature

Special Water Types

 Presentation and code snippets available at

www.DROBOT.org

Or mail me hello@drobot.org

http://www.drobot.org/

WWW.DROBOT.ORG

